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The amplitudes of new and normal wave®elds are obtained in the case of a

slightly bent crystal using the `lamellar crystal' approach. The physical

mechanism of interbranch interaction, which proceeds from this approach, is

interpreted in a simple physical manner. The fundamental set of the differential

equations is derived to study interbranch scattering within the new representa-

tion called the `eikonal representation'. It is supposed that, in the case of strong

bending, an interbranch multiple process may be considered as a resonance one.

1. Introduction

As is well known, the process of interbranch scattering is

activated considerably in the case of X-ray dynamical

diffraction by a strongly deformed crystal. Such an idea was

®rst given by Penning (1966) and was used by Authier (1967)

to explain empirically some features of dislocation images on

X-ray section topographs. This phenomenon contradicts the

ray theory and occurs when the eikonal approximation (Kato,

1964) becomes invalid. In this connection, the rigorous solu-

tion of Takagi's equations was obtained by Katagawa & Kato

(1974) and Chukhovskii & Petrashen' (1977) in the case of a

uniform strain gradient. With the help of this solution, inter-

branch scattering was presented in terms of the Green func-

tions which describe the in¯uence of a single point P0 (usually

on the entrance surface) at another point P (usually on the

exit surface) (Balibar et al., 1983). However, further study of

interbranch scattering is of actual interest; this is due mainly to

the extensive use of strongly deformed crystals in advanced

X-ray applications. Moreover, these investigations would be of

interest to improve the diagnosis of a real crystal, which is a

serious problem in the case of combined defects in particular

(Kato, 1996). In the present paper, the `lamellar crystal'

approach is applied to examine the phenomenon of inter-

branch scattering. Such an approach developed by Darwin

(1914a,b) and Zachariasen (1967) was also used by Authier

(1961) and Kato (1963) to investigate the propagation of

X-rays in deformed crystals. This model was applied to X-ray

and neutron diffraction to calculate the rocking curves

(Albertini et al., 1976; Erola et al., 1990; Zhong et al., 2003) and

to the study of bent monochromators (Egert & Dachs, 1970) as

well. At the same time, based on this approach, we can

describe the physical mechanism of appearance of the inten-

sive new wave®elds predicted by Authier & Balibar (1970) and

simulated by Balibar et al. (1975), by means of simple physical

considerations. The fundamental set of differential equations

is derived to examine interbranch scattering by a bent crystal

with a uniform strain gradient within this new representation.

In addition, new considerations concerning this phenomenon

are proposed in the case of a strong bending, which might be

helpful for the further development of the dynamical theory of

X-ray diffraction by a deformed crystal.

2. General concepts

Using a lamellar crystal as a model for an actual bent crystal is

commonly based on the division of the crystal into lamellae

parallel to the surface, which have a gradually increasing tilt

angle corresponding to the bend of the crystal. In the case of

strong deformations, the thickness of the lamella is often taken

such that the misorientation angle between two successive

lamellae is equal to the Darwin width of the re¯ection.

However, to develop our approach, which would be valid for

any strength of deformation, we give up the latter assumption.

Instead, we assume that the thickness of the lamellae is so

small that the wave®elds excited within them can be

approximated by plane waves. In doing so, we consider a

homogeneously bent crystal where the displacement vector u
is parallel to the entrance surface and depends only on the

depth in the crystal z. Consequently, the amplitudes of the

transmitted and the diffracted waves D0;g excited in any non-

absorbing lamella have the following form in a transmission

symmetric case

D0�z� � A��l� exp
i�

�g

��l � ql�z
" #

� Aÿ�l� exp
i�

�g

��l ÿ ql�z
" #

�1�

Dg�z� � B��l� exp
i�

�g

�ÿ�l � ql�z
" #

� Bÿ�l� exp ÿ i�

�g

��l � ql�z
" #

:

�2�

Here, zl � z � zl�1, where l = 0, 1, 2, . . . , and the coordinates

zl, zl+1 correspond to the front and rear surfaces of the

(l + 1)th lamella, respectively; �l is the normalized deviation

parameter; ql � �1� �2
l �1=2 and �g is the X-ray extinction
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length. To avoid intermediate phase contributions during the

further calculations that do not in¯uence the ®nal results,

amplitudes A��l� are numbered so as to specify the amplitudes

before the crystal by A��0�. In addition, we suggest that

wave®elds with amplitudes A��l� are related to the lth lamella,

in order that the numbering of lamellae runs from 1.

In fact, expressions (1) and (2) can be considered as the

appropriate solutions of Takagi's equations, expressed as

combinations of the two wave®elds of amplitudes A� and B�,

where the � and the ÿ signs correspond to the upper and

lower branches of the local dispersion surface, respectively.

Since the new wave®elds formed due to interbranch scattering

increase with increasing deformation, the contribution of the

interbranch scattering of the wave®elds can be accumulated

rapidly with growing crystal thickness. Therefore, to take into

account this process correctly, we consider the X-ray dy-

namical diffraction within `lamellae', in spite of the fact that

their thickness may be signi®cantly less than the X-ray

extinction length. Thus, X-ray scattering by the lamellar bent

crystal takes place in the manner shown in Fig. 1. In this ®gure,

k�0 and k�g are the wavevectors of the transmitted and

diffracted waves; n is the normal to the entrance surface and

l + 1, l + 2, . . . denote the lamellar slices. It should be noted

that each of the four waves k�0;g formed in the (l + 2)th lamella

can be divided into two terms shown in Fig. 1 separately and

marked in different ways. The terms marked by one dash

constitute the contributions to the wave®elds excited in the

(l + 1)th lamella, which are due to dynamical diffraction of the

waves k�0 �l� or k�g �l�. At the same time, we mark the contri-

butions associated with dynamical diffraction of the waves

kÿ0 �l� or kÿg �l� by two dashes. We will assume also that the

wave®elds and their ®rst derivatives are continuous on

crossing boundaries between lamellae. Then, the basis sets of

recurrent equations for amplitudes of the transmitted wave

A� follow from (1) in accordance with the sketch drawn in

Fig. 1.

A��l � 1� � A��l�
2ql�1

���l � ql� ÿ ��l�1 ÿ ql�1��

� exp
i�

�g

��l ÿ �l�1 � ql ÿ ql�1�zl�1

� �
� Aÿ�l�

2ql�1

���l ÿ ql� ÿ ��l�1 ÿ ql�1��

� exp
i�

�g

��l ÿ �l�1 ÿ ql ÿ ql�1�zl�1

� �
�3�

Aÿ�l � 1� � Aÿ�l�
2ql�1

���l�1 � ql�1� ÿ ��l ÿ ql��

� exp
i�

�g

��l ÿ �l�1 ÿ ql � ql�1�zl�1

� �
� A��l�

2ql�1

���l�1 � ql�1� ÿ ��l � ql��

� exp
i�

�g

��l ÿ �l�1 � ql � ql�1�zl�1

� �
: �4�

As appears also from (1) and (2), analogous equations for the

amplitudes of the diffracted waves B� may be obtained from

(3) and (4) by replacing �l !ÿ�l. Such a form of recurrent

equations is advantageous to study interbranch scattering

because the contributions of the interbranch and into-a-

branch processes are separated and expressed in the different

terms here. Obviously, the ®rst terms on the right-hand sides

of (3) and (4) describe into-a-branch scattering and the second

terms interbranch scattering.

In the lamellar crystal approach, analytical description of

interbranch scattering effects may be simpli®ed by introducing

a new representation of the dynamical diffraction by a bent

crystal. Within this representation, hereafter called the

`eikonal representation', we will consider the amplitudes D0,g

as superpositions of the modulated normal (i.e. predicted by

the eikonal theory) wave®elds. Then, we should extract into-a-

branch contributions from amplitudes A��l� to determine the

modulation amplitudes. It is worth observing that concepts

presented by Shevchenko & Pobydaylo (2003) may be used as

physical motivation to devise such a representation. Indeed,

based on the quantum-mechanical analogy of X-ray dynamical

diffraction by a deformed crystal, in this work it was suggested

that interbranch scattering may be similar to a beating tran-

sition between close quantum levels in the case of the viola-

tion of adiabatic invariance. This implies amplitude and phase

modulation of the normal wave®elds due to interbranch

transitions, which is taken into account within the eikonal

representation. In subsequent sections, we will exploit this

representation extensively and obtain new fundamental

equations that correspond to the eikonal representation and

are suitable for the study of interbranch scattering.

3. The slightly bent crystal case

Examination of X-ray dynamical diffraction by a slightly

deformed crystal is of great interest to test any theoretical

approach. From this viewpoint, we will apply a lamellar crystal
Figure 1
X-ray dynamical diffraction in a lamellar bent crystal.



approach to study interbranch scattering by a weakly bent

crystal. In this case, the terms on the right-hand sides of (3)

and (4), which describe this process, must be so small that they

may be neglected in the eikonal approximation of the X-ray

dynamical theory. Then, assuming that the thickness of a

lamella is suf®ciently small, we found the analytical solutions

of the recurrent equations with the help of the procedure

developed in Appendix A. The expression for amplitude D0

that proceeds from this solution is identical with the one

corresponding to the eikonal approach.

To specify interbranch scattering, we introduce the ampli-

tudes of new wave®elds A�New. It is natural to de®ne them in

the following manner:

A��l� � A�N�l� � A�New�l�; �5�
where A�N�l� are eikonal approximations of the wave ampli-

tudes. Clearly, jA�Nj � jA�Newj in the case of the slightly bent

crystal. Bearing this in mind, we insert (5) into (3) and (4),

after that we can get the following equations for amplitudes

A�New:

A�New�l � 1� � A�New�l�f ��ql;�ql�1� � A�N�l�f ��ql;�ql�1�:
�6�

Here functions

f �ql; ql�1� �
1

2ql�1

���l � ql� ÿ ��l�1 ÿ ql�1��

� exp
i�

�g

��l ÿ �l�1 � ql ÿ ql�1�zl�1

� �
:

To consider interbranch processes within the eikonal repre-

sentation, we extract the fraction equal to an into-a-branch

contribution out of the amplitudes A�New�l�. Such a contribu-

tion is described by expression (23) given in Appendix A.

Consequently, we should take amplitudes A�New�l� in the form

A�New�l� � ~A�New�l�
Qlÿ1

n�0

f ��qn;�qn�1�; �7�

where ~A�New�l� are interbranch components of the modulation

amplitudes ~A��l�, by means of which the amplitudes A��l� are

expressed in terms of eikonal representation. Taking into

account expressions (7) and (23), we rewrite (6) as follows:

� ~A�New�l� � A�N�0�
f ��ql;�ql�1�
f ��ql;�ql�1�

Ylÿ1

n�0

f ��qn;�qn�1�
f ��qn;�qn�1�

: �8�

Here � ~A�New�l� � ~A�New�l � 1� ÿ ~A�New�l�. To reduce (8), we

substitute the approximate expressions (24) for functions

f ��qn;�qn�1� under the product symbol and take into

consideration the following equality:

�q0 ÿ q1�z1 � �q1 ÿ q2�z2 � . . .� �qlÿ2 ÿ qlÿ1�zlÿ1 � �qlÿ1 ÿ ql�zl

� q0�z1 ÿ z0� � q1�z2 ÿ z1� � . . .� qlÿ1�zl ÿ zlÿ1� ÿ qlzl; �9�

where the point z0 = 0 corresponds to the entrance surface.

Grouping the phase terms in (8) according to (9), we have

� ~A�New�l� � A�N�0�
��l � ql� ÿ ��l�1 � ql�1�
��l � ql� ÿ ��l�1 � ql�1�

exp �
Xlÿ1

n�0

��n

qn

" #

� exp � 2i�

�g

Xlÿ1

n�0

qn�zn � ql�zl

 !" #
: �10�

Here, �zn � zn�1 ÿ zn and ��n � �n�1 ÿ �n. If we let

�zn ! 0, it is possible to replace the summation over n by

integration over z and modify the multiplier preceding the

exponential factors to the form �0�z��ÿq� �� dz=�2q2�. We

will suppose that the displacement ®eld u�z� � �z2=�2R�,
where R and � are the radius of curvature (de®ned positive)

and the constant describing the deformation, respectively. It is

easy to ®nd the derivative �0�z� � �g�g=�2�R� in this case.

Thus, one can obtain from (10) after some straightforward

manipulation

d ~A�New�z� � ÿ
"�

�g

A�N�0�
exp ��2i�=�g�

R z

0 q�z� dz
� �

2q2�z��!� �1� !2�1=2� dz: �11�

Here " � �g�2
g=�2�2R� and ! � g�g��in=�2��, where the

departure of the incident plane wave from Bragg's law is

��in < 0. By means of integration, we can derive from (11) the

following expressions for ~A�New:

~A�New�z� � ÿ
"�

�g

A�N�0�
!� �1� !2�1=2

Zz

0

d�

2q2��� exp � 2i�

�g

Z�
0

q�t� dt

24 35:
�12�

Supposing weak bending such that "� 1, integration in (12)

may be carried out in an asymptotic way (see Appendix B).

Then, the amplitudes ~A�New have the form

~A�New �
exp�ÿ2="�

!� �1� !2�1=2
exp

�
� i

"
fÿ!�1� !2�1=2

� ln�ÿ!� �1� !2�1=2�g
�
: �13�

It is necessary to remark that the same results were obtained

by Chukhovskii (1980b) with the help of the asymptotes of the

rigorous solution. One can also obtain it by considering a bent

crystal as a crystal sliced in many lamellae. Obviously, this fact

veri®es the correctness of the general concepts developed

above within the lamellar crystal approach.

4. The fundamental equations of dynamical theory in
eikonal representation

To study interbranch scattering in the case of a crystal with an

arbitrarily strong bending, the new fundamental equations

corresponding to eikonal representation may be deduced

directly from the basic set of recurrent equations. For this

purpose, we rewrite equations (3) and (4) in the form

A��l � 1� � f ��ql;�ql�1�A��l� � f ��ql;�ql�1�A��l�: �14�
It is clear that, similarly to amplitudes of new wave®elds A�New,

amplitudes A��l� can be expressed in terms of the eikonal

representation with the help of relations
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A��l� � ~A��l� Qlÿ1

n�0

f ��qn;�qn�1�: �15�

Inserting (15) into (14) and introducing � ~A��l� �
~A��l � 1� ÿ ~A��l�, we can rearrange equations (14) as follows:

� ~A��l� � f ��ql;�ql�1�
f ��ql;�ql�1�

~A��l�
Ylÿ1

n�0

f ��qn;�qn�1�
f ��qn;�qn�1�

: �16�

Using the same considerations that were applied to expres-

sions (10) in the previous section, we can derive from (16) the

following differential equations for ~A��z�:

d ~A��z�
dz

� ÿ
~A��z� exp���2i�=�g�

R z

0 q�z� dz�
2q2�z��!� �1� !2�1=2�

"�

�g

: �17�

These equations are valid for any strength of deformation and

describe the transfer of energy between the wave®elds asso-

ciated with the different branches of the dispersion surface

and forming the transmitted beam. As was noticed above, the

value �l for the transmitted wave is opposite in sign to the

appropriate local deviation parameter for the diffracted wave.

Hence, the differential equations for the amplitudes ~B��z�
relating to the eikonal representation can be obtained by

replacing R by ÿR and ! by ÿ! in equations (17). It should

also be observed that equations (17) can be transformed into

inhomogeneous differential equations for ~A�New�z�. It is

necessary to make the substitution ~A��z� � ~A�New�z� � A��0�
in (17), which follows from de®nition (5) in the limit �zl ! 0.

It is worth remarking that, contrary to Takagi's equations,

describing both into-a-branch and interbranch scattering, only

the latter process is considered by equations (17). For this

reason, comparing the eikonal representation and the modu-

lated waves corresponding to Takagi's equations, one can

point out an analogy with the quantum-physics representa-

tions. Indeed, if the characters of into-a-branch and inter-

branch scattering are taken into account, it is relevant to

associate these processes with nonperturbation and pertur-

bation parts of an effective Hamiltonian, respectively. Then,

the SchroÈ dinger and interaction representations will corre-

spond to the modulated waves and the eikonal ones, respec-

tively. This analogy might be of interest to study X-ray

dynamical diffraction by a deformed crystal with the aid of the

methods developed within the quantum representations.

5. Interbranch multiple scattering of X-rays by strongly
bent crystal

In the previous calculations of the amplitudes of new wave-

®elds propagating in a slightly bent crystal, we did not take

into account dynamical interchange between the waves ~A�. At

the same time, considering interbranch scattering as a multiple

process, it is natural to suggest that multiple interbranch

scattering is intensi®ed signi®cantly with increasing deforma-

tions. Obviously, in this case, we must employ equations (17),

which have the following form in the vicinity of point z0:

d ~A��z�
dz

� ÿ "�
2�g

'� ~A� exp �2i
�

�g

z

� �
: �18�

Here

'� � exp���2i�=�g�
R z0

0 q�z� dz�
�!� �1� !2�1=2� :

It is evident that, by appropriate changes of the amplitudes

A�, equations (18) may be rearranged into the form analogous

to Takagi's equations such that their solutions are combina-

tions of the two modes

~A��z� � c�1 �z0� exp
i�

�g

��1� ��z
" #

� c�2 �z0� exp
i�

�g

��1ÿ ��z
" #

;

�19�
where � � �1� �"=2�2�1=2 and c�1;2 are unknown coef®cients.

Then, comparing expressions (19) and (1), (2), we can treat the

distance � � �g=�2"� as the interbranch extinction length.

Thus, one can see that interbranch interaction between the

waves ~A� results in splitting of the branches of the dispersion

surface, which is characterized by the interbranch extinction

length. It is reasonable to assert that this dynamical splitting,

caused by interbranch interaction, must be taken into account

when the following condition is ful®lled:

"=2 � 1: �20�
Similarly to the dynamical case of Bragg re¯ection, one can

suppose as well that interbranch scattering may be considered

as a resonance dynamical process in the case of strong

deformations satisfying (20). Keeping the sketch shown in Fig.

1 in mind, we are able to interpret the physical mechanism of

such processes in a simple physical manner. In this connection,

we consider the wave k�0 �l� excited in the (l � 1)th lamella.

The energy of this wave is partitioned between the waves

k�0 �l � 1� and kÿ0 �l � 1� because of the dynamical diffraction

of the wave k�0 �l� in the (l � 2)th lamella. However, owing to

dynamical diffraction of the wave kÿ0 �l � 1� in the (l � 3)th

lamella, some part of the energy of this wave is rescattered

back into the wave k�0 , forming the secondary wave in this

direction. As follows from (3) and (4), the amplitude of the

primary wave k�0 �l� differs from the amplitude of the

secondary wave by the following factor near z0:

W � ÿ �z

�
�

� �2

exp�i���z��; �21�

where ���z� � 2��z=�g is the phase shift between these

waves. As appears from (21), the secondary beam may modify

the amplitude of the primary one considerably when condition

(20) is valid. This means that constructive interference of the

secondary waves forming the new wave®eld takes place, owing

to which its amplitude increases signi®cantly. On the other

hand, the resulting amplitude of the secondary waves accu-

mulates in the lamellae in a signi®cantly slow way in relation

to the destructive phase shift between them, for weak bending

with "=2� 1. For this reason, these waves interfere destruc-

tively and the intensity of the new wave®eld is small in



comparison with that of the normal one. In this case, the

amplitudes of the new wave®elds identical with (13) may be

obtained directly from the set of differential equations (17) by

passing to the limit "! 0.

It is easy to see that the mechanism of interbranch inter-

action is similar to that of the dynamical interchange between

diffracted and transmitted waves. In both cases, the primary

beam should be diffracted a second time, which builds up a

twice-diffracted (secondary) beam. However, if we take

interbranch scattering into account, it is necessary to consider

both diffraction processes as dynamical ones. It follows from

this that interbranch interaction will be maximal at the tops of

the dispersion hyperbolas, where the most suitable conditions

for diffraction are realized. Clearly, owing to an increase of

deviation parameter, interbranch interchange will decrease far

from z0. Moreover, the diffracting mechanism of interbranch

scattering implies that the interbranch process should be

effective inside the range �z, within which dynamical

diffraction of X-rays by a bent crystal takes place. Considering

homogeneous bending, it is easy to estimate that �z � R	D,

where 	D is the angular half-width of the dynamical rocking

curve. It is important to note that the value �z turns out to

satisfy the relation �z � � and decreases with decreasing

radius R, such that �z� �g for a deformation exceeding the

limits of the eikonal approximation considerably. Therefore, in

the case of strong deformation, interbranch transitions occur

in the neighborhood of z0, which will be contracted with

increasing deformation. These facts agree with data from

computer experiments, which may be found in a review

(Gronkowski, 1991).

Thus, taking into account the multiple character of inter-

branch scattering, we can introduce the interbranch extinction

length � and consider such a phenomenon as a resonance one

in the case of strong bending. It is worth paying attention to

the fact that the value � can be controlled by the variation of

deformation. When the condition � � �g, equivalent to

"=2 � 1, is attained in such a way, the eikonal approximation

becomes invalid and the generation of the intensive new

wave®elds takes place (see Authier, 2001). In this case, based

on the considerations given above, it is possible to suppose

that the resonance increase of interbranch processes should

begin as well. In this connection, one may suggest that addi-

tional study of this point would be of interest to obtain a deep

insight into X-ray dynamical diffraction phenomena in

deformed crystals.

6. Conclusions

1. With the application of the lamellar crystal approach to a

slightly bent crystal, the amplitudes of the new wave®elds and

the normal ones corresponding to the eikonal approximation

were calculated.

2. The fundamental set of the differential equations was

derived from the basic sets of recurrence equations by going to

the limit of in®nitesimal thickness of a lamella. These equa-

tions describe interbranch scattering as dynamical interchange

of the modulated normal wave®elds, corresponding to

different branches of the dispersion surface and given in terms

of the new representation called the eikonal representation.

3. With interbranch scattering considered as a dynamical

process, the conjecture about the resonance character of this

phenomenon in the case of strong deformation was advanced.

The criterion � � �g is the necessary condition to realize it,

where � is the interbranch extinction length.

4. Based on lamellar crystal considerations, a new treatment

for the physical mechanism of interbranch interaction was

proposed. In this connection, a `jump' of the tiepoint from one

branch to the other should be associated with the formation of

twice dynamically diffracted beams.

APPENDIX A

In the case of the eikonal approximation of the X-ray dy-

namical theory, one can represent sets of recurrent equations

for amplitudes A� in the form

A��l� � A��l ÿ 1�f ��ql;�ql�1�: �22�
Equations (22) may be solved by means of successive multi-

plications of the right-hand sides of these equations. After

such a procedure, we have

A��l� � A��0�Qlÿ1

n�0

f ��qn;�qn�1�: �23�

Here, we put �0 � 0 and q0 � 0. Considering the differences

��l � �l�1 ÿ �l and �ql � ql�1 ÿ ql to be suf®ciently small,

we approximate the functions f ��ql;�ql�1� by the following

exponents:

f ��ql;�ql�1� � exp � ��l

2ql�1

ÿ �ql

2ql�1

� �
� exp

i�

�g

��l ÿ �l�1 � ql � ql�1�zl�1

� �
: �24�

Substituting expressions (24) into (23), we ®nd that the

amplitudes A� are given by

A��l� � A��0� exp
Xlÿ1

n�0

1

2qn

����n ÿ�qn�
" #

� exp ÿ i�

�g

��l � ql�zl �
i�

�g

Xlÿ1

n�0

��n � qn��zn

" #
: �25�

Substituting (25) into (1) and considering zl � z � zl�1, one

can obtain that amplitude D0�zl�1� is the sum of two terms:

A��0� exp
Xlÿ1

n�0

1

2qn

� "�
�g

�zn ÿ�qn

� �" #

� exp
i�

�g

��l � ql��zl �
i�

�g

Xlÿ1

n�0

��n � qn��zn

" #
: �26�

Letting �zn ! 0 and considering the values q and � as

functions of the variable z, we replace summation over n in
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(26) by integration over z. Then, taking the boundary condi-

tions at z = 0 into account, one can obtain the following

expression for amplitude D0�z�:

D0�z� � exp�igu�z�=2� �1� !
2�1=2 cos ��z� ÿ ! sin ��z�

�1� !2�1=4�1� �!� "�z=�g�2�1=4
;

�27�

where �(z) is the eikonal function of the following form:

��z� � 1

2"

�
�!� "�z=�g��1� �!� "�z=�g�2�1=2 ÿ !�1� !2�1=2

� �1� i"� ln!� "�z=�g � �1� �!� "�z=�g�2�1=2

!� �1� !2�1=2

�
:

�28�

As seen from (27) and (28), these expressions are identical

with the appropriate ones corresponding to the eikonal

approximation (see Chukhovskii, 1980a). It should also be

noted that with the help of analogous considerations it is

possible to calculate the amplitude of the diffracted wave Dg,

which will be identical with the results of the eikonal approach

too.

APPENDIX B

To determine the amplitudes of new wave®elds ~A�New in the

case of a slightly bent crystal, we should carry out the

following integration:

I� � ÿ "�
�g

Zz

0

exp � 2i�

�g

Zz

0

q�z� dz

24 35 dz

q2�z�: �29�

As is easily seen, in the integrand it is convenient to make the

substitution � � ÿ!�z=z0 ÿ 1�, where z0 � ÿ!�g=�"��,
q��� � �1� �2�1=2 and, moreover, we take z � z0 to account

for interbranch scattering near the tops of the dispersion

hyperbola. Then, one can get from (29)

I� � exp � 2i

"

Zj!j
0

q�t� dt

24 35Z�
!

exp � 2i

"

Z�
0

q�t� dt

24 35 d�

q2���:

�30�
The ®rst multiplier in (30) contains the table integral, which

may be taken from Prudnikov et al. (1981). At the same time,

the second integral in � may be calculated in an asymptotic

way under condition "� 1. In this case, the exponential factor

in the integrand is an oscillating sharp function and, conse-

quently, integration over the neighborhood is appreciable only

at � = 0. Therefore, one can approximate this factor by

exp��2i�="� and extend the limits of integral to in®nities.

Then, considering � as a complex variable, we will integrate

along the path C(0) + C(ÿ) (C(0) + C(+)) enclosing the pole

ÿi (+i) for integrals I�, respectively (see Fig. 2). Placing the

contours C��� at in®nity, we can neglect integration along

them. With this in mind and by calculation of the appropriate

residues, it is easy to obtain ®nally

I� � ��
2

exp�ÿ2="� exp

�
� i

"
�ÿ!�1� !2�1=2

� ln�ÿ!� �1� !2�1=2�
�
:
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The integration contours for calculation integrals I�.


